Transformation and biodegradation of 1,2,3-trichloropropane (TCP)
نویسندگان
چکیده
PURPOSE 1,2,3-Trichloropropane (TCP) is a persistent groundwater pollutant and a suspected human carcinogen. It is also is an industrial chemical waste that has been formed in large amounts during epichlorohydrin manufacture. In view of the spread of TCP via groundwater and its toxicity, there is a need for cheap and efficient technologies for the cleanup of TCP-contaminated sites. In situ or on-site bioremediation of TCP is an option if biodegradation can be achieved and stimulated. This paper presents an overview of methods for the remediation of TCP-contaminated water with an emphasis on the possibilities of biodegradation. CONCLUSIONS Although TCP is a xenobiotic chlorinated compound of high chemical stability, a number of abiotic and biotic conversions have been demonstrated, including abiotic oxidative conversion in the presence of a strong oxidant and reductive conversion by zero-valent zinc. Biotransformations that have been observed include reductive dechlorination, monooxygenase-mediated cometabolism, and enzymatic hydrolysis. No natural organisms are known that can use TCP as a carbon source for growth under aerobic conditions, but anaerobically TCP may serve as electron acceptor. The application of biodegradation is hindered by low degradation rates and incomplete mineralization. Protein engineering and genetic modification can be used to obtain microorganisms with enhanced TCP degradation potential.
منابع مشابه
A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.
1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we ...
متن کاملEffect of 1,2,3-Trichloropropane as Tri-Functional Monomer on Thermophysical Properties of Poly(ethylene tetrasulfide)
In this study, the effect of 1,2,3-trichloropropane (TCP) as trifunctional monomer on thermophysical properties of synthesized poly(ethylene tetrasulfide) (PETS) is investigated. To this end, different amounts of TCP (0-40 mol. % of halide-containing monomer) were incorporated into the structure of polysulfide polymer via interfacial condensation polymerization. Measuremen...
متن کاملCrystallographic analysis of 1,2,3-trichloropropane biodegradation by the haloalkane dehalogenase DhaA31.
Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increas...
متن کاملBiodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene.
Using a combined strategy of random mutagenesis of haloalkane dehalogenase and genetic engineering of a chloropropanol-utilizing bacterium, we constructed an organism that is capable of growth on 1,2,3-trichloropropane (TCP). This highly toxic and recalcitrant compound is a waste product generated from the manufacture of the industrial chemical epichlorohydrin. Attempts to select and enrich bac...
متن کاملComputation-Guided Design of a Stimulus-Responsive Multienzyme Supramolecular Assembly.
The construction of stimulus-responsive supramolecular complexes of metabolic pathway enzymes, inspired by natural multienzyme assemblies (metabolons), provides an attractive avenue for efficient and spatiotemporally controllable one-pot biotransformations. We have constructed a phosphorylation- and optically responsive metabolon for the biodegradation of the environmental pollutant 1,2,3-trich...
متن کامل